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INTRODUCTION

Mature T cells are produced in the thymus and released into

the bloodstream in low numbers. These cells are considered

to be immunologically naı̈ve until such time as they

encounter MHC-peptide complexes for which their T-cell

receptors (TCR) have high affinity. Recognition of antigen

in appropriate form, i.e. in association with costimulatory

signals on the surface of professional antigen-presenting

cells (APCs), leads to extensive T-cell proliferation and

differentiation into effector cells. Once the infection has

been cleared, it is no longer of benefit to the host to maintain

high numbers of effector cells and most of the activated

T cells die by apoptosis. However, a proportion of these

cells survive, leaving the frequency of cells specific for the

priming antigen much higher among memory T cells than

that which existed among naı̈ve T cells. This difference in

frequency makes a major contribution to the nature of the

secondary response, which is typically faster and of greater

magnitude than the primary response. In addition, T cells

may also carry a true ‘memory’ of a prior response to

antigen, exhibiting differences from naı̈ve T cells at the

single cell level. Here we provide a brief overview of the

qualitative differences that have been reported to exist

between naı̈ve and memory T cells and evidence that

memory T cells themselves are functionally heterogeneous.

PHENOTYPIC DIFFERENCES BETWEEN NAÏVE

AND MEMORY T CELLS

The supposition that naı̈ve and memory T cells can be

distinguished phenotypically is based on the notion that

memory T cells retain a permanent imprint of having

responded to antigen. Precise identification of memory

T cells, however, remains problematic. Unlike B cells, T cells

do not appear to mutate their antigen receptor genes during

the course of an immune response. Furthermore, discrimi-

nation between effector and memory T cells is accomplished

on the basis of rather nebulous criteria; memory T cells are

considered to differ from effector T cells by their continued

survival after the acute immune response has died down and

by being in a lower state of activation. As discussed further

below, these distinctions are becoming increasingly blurred.

Despite these difficulties, a number of phenotypic differ-

ences between naı̈ve and memory T cells have been noted.

Most of these are changes that arise during initial T-cell

activation and appear to persist in memory cells. Especially

prominent are differences in the cell surface expression

of adhesion molecules between naı̈ve and memory T cells.

Thus, compared to naı̈ve T cells, memory T cells have been

reported to express higher levels of b1 (CD29, CD49d

and CD49e) and b2 (CD11a, CD11b and CD18) integrins,

CD2, CD44, CD54 and CD58.1–11 Increased expression of

adhesion molecules on recently activated T cells reflects the

requirements for effector T cells to enter peripheral tissues

at sites of inflammation and interact with target cells, and

may similarly affect the function of some memory T cells

(see below).

The expression of other molecules involved in lympho-

cyte migration also differs between naı̈ve and memory

T cells. Of particular interest are differences in the expres-

sion of two key molecules required for the entry of T cells

into lymph nodes through high endothelial venules (HEVs):

CD62L and CCR7. CD62L binds to vascular addressins

expressed on HEVs and is responsible for the initial stage

of adherence of blood-borne T cells to HEVs,12 while the

CCR7 chemokine receptor controls responsiveness to

chemokines expressed in HEVs at sites of lymphocyte

entry.13 Whereas naı̈ve T cells are uniform in expressing

high levels of both molecules, some memory cells lose

expression of CD62L and/or CCR7.14–17 However, memory

T cells may express receptors for chemokines that direct

them to inflammatory sites and for molecules involved

in homing to peripheral tissues, such as the cutaneous

lymphocyte antigen (CLA) which is involved in lymphocyte

migration to skin.17

Other cell surface molecules that have been reported

to distinguish between naı̈ve and memory T cells include the

IL-2R b-chain (CD122),18,19 Ly-6C19–21 and the common

leukocyte antigen (CD45).4,6,14,22–28 CD122 is a component

of both the IL-2R and the IL-15R and may play a role in

the maintenance of memory T cells (see below),29 while
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Ly-6C is a low-molecular-weight (MW) glycosylphophati-

dylinositol-anchored molecule that has been proposed to

participate in intercellular adhesion;30 both CD122 and

Ly-6C are expressed at high levels on CD8+ memory T cells

in the mouse. For CD45, which is a tyrosine phosphatase

that regulates signalling through antigen receptors and

cytokine receptors,31,32 it is the form of the molecule that

differs between naı̈ve and memory cells, rather than the level

of expression. Multiple isoforms of CD45 are generated by

differential splicing of three extracellular exons (A, B

and C). These restricted (R) isoforms can be detected

specifically with mAb directed against the variably spliced

exons. Naı̈ve T cells express the highest MW isoform,

containing all three of these exons (commonly referred to as

CD45RA in humans). During the course of T-cell acti-

vation, T cells switch to expressing lower-MW isoforms; in

humans at least, activated T cells express the isoform of

CD45 lacking all three variably spliced exons (defined as

CD45R0). In many different species, expression of low-MW

isoforms of CD45 is retained on memory cells.

Since many of the phenotypic properties associated

with memory T cells are in fact acquired soon after

activation, these markers cannot be used on their own to

discriminate between recently activated cells and memory

cells. This distinction can be aided to a certain extent by

combining these phenotypic markers with other criteria to

exclude T cells that are actively responding to antigen. For

example, it is generally assumed that memory T cells do

not have a blasted morphology and do not express transient

markers of activation such as CD69. Furthermore, differ-

ences in cell surface glycosylation have been reported to

exist between effector and memory CD8+ T cells in mice.

Specifically, memory cells have a higher degree of sialylation

on 1 O-glycans and express lower levels of 2 O-glycans

than effector cells;33–36 this difference can be detected using

an antibody that binds specifically to CD43 only when this

molecule has been modified by 2 O-glycans.37 However,

in using signs of recent activation as exclusion criteria

for memory T cells, it must be borne in mind that even

long-term memory cells appear to be more metabolically

active than naı̈ve T cells.38 As discussed below, memory

T cells undergo periodic rounds of cell division even in the

complete absence of antigen. Therefore, markers of recent

activation cannot be used definitively to distinguish between

effector and memory T cells.

Although memory T cells are enriched amongst cells

expressing the surface markers discussed above, it is also

clear that memory cells exhibit substantial phenotypic

heterogeneity. This issue has received considerable atten-

tion in recent years, with interest stemming largely from a

report that CD45R0+ T cells in human blood can be

divided into CD62L+CCR7+ and CD62LxCCR7x sub-

populations.17 These cells have been termed ‘central

memory’ and ‘effector memory’ cells, respectively, based

on their expression of lymph node homing molecules and

their functional properties (see below). In addition to

CD62L and CCR7, memory T cells may express other

markers associated with naı̈ve T cells, such as high-MW

isoforms of CD45.16,17,39–46

In some instances, it is evident that expression of a

‘naı̈ve’ phenotype by primed cells represents phenotypic

reversion. This has been shown to be the case for CD62L,

CCR7 and high-MW isoforms of CD45, each of which

can be re-expressed by cells that were formerly negative

for these markers.39,41,47–52 Phenotypic reversion occurs

at different rates in different species and also differs for

CD4 vs. CD8 cells. For example, rat CD45RCx (memory-

phenotype) CD4+ T cells re-express CD45RC within 1 week

when transferred to secondary recipients in the absence

of antigen;39,41 the rapidity with which this reversion takes

place suggests that the CD45RC– phenotype in the rat is

a marker of recent activation rather than memory.

Conversely, CD4+ memory T cells in mice can maintain a

CD45RBlow phenotype for at least 10 weeks in the absence

of antigen, although CD8+ T cells re-express CD45RB

soon after activation.53

Phenotypic reversion is presumed to reflect a ‘cooling

down’ of activated cells; lack of contact with antigen results

in a return to a resting state and the loss of expression

of activation molecules. By corollary, retention of memory

markers may be indicative of periodic contact with persist-

ing antigen. However, some phenotypic markers, particu-

larly the expression of high levels of CD44 on mouse

memory T cells, appear to be retained long-term in the

complete absence of antigen.54,55 In addition, mechanisms

other than reversion may account for some of the pheno-

typic heterogeneity observed amongst memory T cells. In

this respect, it is notable that some CD45RA+ CD8+

T cells in human peripheral blood exhibit the properties of

activated effector cells.11 These cells, which also express

low levels of CD28 and CD27, appear to arise from

chronic antigenic stimulation.56,57 Likewise, some primed

CD45RA+ CD4+ T cells can be found under conditions of

chronic antigen exposure.45

Whether the CD45RA+ cells observed in these studies

have in fact re-expressed this molecule is unclear. Another

possibility is that some cells may retain expression of

CD45RA under certain conditions of activation. This is

worth considering in view of data showing that mouse

CD8+ T cells can differentiate directly into cells with the

properties of central memory cells following antigenic

stimulation in vitro.58,59 In these studies, brief exposure of

CD8+ T cells to antigen followed by culture in IL-15 or low

doses of IL-2 generated T cells that retained expression of

CD62L and CCR7 and which lacked overt effector activity.

By contrast, cells exposed to high concentrations of IL-2

after antigenic stimulation lost expression of CD62L and

CCR7 and differentiated into effector cells. Therefore,

acquisition of all of the markers typically associated

with T-cell activation is not an inevitable consequence of

antigenic stimulation.

Also complicating the use of phenotypic markers to

distinguish between naı̈ve and memory T cells is the fact

that naı̈ve T cells can acquire markers of memory cells in

the absence of overt antigenic stimulation. This has been

demonstrated to occur when small numbers of naı̈ve cells

are adoptively transferred into lymphopenic recipients.60–68

Under these conditions, naı̈ve T cells proliferate slowly
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(so-called homeostatic proliferation), up-regulate expres-

sion of activation/memory markers and exhibit effector

activity. Notably, this response is driven not by specific

antigen but by self-peptide-MHC complexes in combination

with cytokines.60,61,64,69–71 The contribution of cells gener-

ated by this process to the pool of memory-phenotype T cells

in normal mice is unclear. However, the fact that very

few memory-phenotype T cells are observed in germ-free

mice argues that most memory-phenotype T cells are

derived from antigenic stimulation.27 Nevertheless, it

remains possible that the phenotypic conversion associated

with homeostatic proliferation may make a significant

contribution to the pool of memory-phenotype T cells under

conditions of lymphopenia.

NAÏVE AND MEMORY T CELLS EXHIBIT

QUALITATIVELY DIFFERENT RESPONSES TO

ANTIGEN

It has been evident for many years that memory-phenotype

T cells respond to antigen in a qualitatively different

way from naı̈ve-phenotype T cells.2,27,72–81 In recent years,

experiments employing TCR transgenic T cells have

provided strong evidence that this is also true for bona

fide naı̈ve and memory cells. Differences are manifest at

two levels.

Firstly, memory T cells appear to have less stringent

requirements for activation than naı̈ve T cells. This may

include an ability to respond to lower concentrations of

antigen than naı̈ve T cells,21,82–85 although some investi-

gators have failed to find any difference between naı̈ve

and memory T cells in their sensitivity to antigen.86–88 In

addition, memory T cells are less dependent on costimula-

tory signals than naı̈ve T cells, and do not require as long

a duration of antigenic stimulation. Each of these factors

may contribute to the fact that a wider range of cells can

act as APCs for memory T cells compared to naı̈ve T cells.

Thus, while activation of naı̈ve T cells is strictly dependent

on antigen presentation by dendritic cells (DCs),89 memory

T cells respond to antigen presented on other APCs,

including resting B cells.90

Secondly, once they have been activated, the response

characteristics of naı̈ve and memory T cells also differ.

For example, there is some evidence that memory T cells

proliferate faster and reach higher numbers in vivo than

naı̈ve T cells following antigenic stimulation.91–93 However,

this issue remains contentious, as these differences have not

been detected in other studies.88 Conversely, it is a general

finding that memory T cells display effector functions

sooner after activation than naı̈ve T cells. This includes the

expression of cytolytic activity (for CD8+ T cells) and

the secretion of cytokines other than IL-2.

Some clues as to the biochemical basis of the altered

responsiveness of memory T cells have been uncovered.

For instance, the rapid expression of effector cytokines

by memory T cells may be linked to the modulation of

chromatin structure or demethylation of promoters for

cytokine genes; this has been shown to occur following

initial T-cell activation and is inherited by daughter

cells.94,95 Indeed, some memory T cells have been shown

to express mRNA for effector cytokines prior to secondary

stimulation.92,93 In addition, non-dividing memory T cells

possess a higher content of both RNA and protein than

naı̈ve T cells, suggesting that memory cells may be resting in

the G1 rather than the G0 phase of the cell cycle.38,93 This

might allow for faster entry into S phase and initiation

of DNA replication by memory T cells following TCR

triggering. Furthermore, several differences between naı̈ve

and memory T cells have been noted that could affect

signalling pathways within these cells. Specifically, naı̈ve

and memory T cells have been shown to differ with respect

to phosphorylation and association of signalling compo-

nents of the TCR/CD3 complex,96 expression of the linker/

adapter molecule SLPx7697 and association of CD45 with

the TCR or CD4.98,99

Another factor that could contribute to the altered

properties of memory T cells is an enhanced ability to

interact with APCs compared to naı̈ve T cells. Given their

increased expression of various adhesion molecules (see

above), it seems likely that memory cells will form

higher avidity interactions with other cells; this could

contribute to the wider range of APCs utilized by memory

vs. naı̈ve T cells. Furthermore, there is evidence that T cells

are selectively recruited on the basis of expressing TCRs

with higher affinity for antigen during the course of an

immune response.100–110 This is a result of the loss of cells

expressing TCRs with the fastest dissociation rates for

peptide-MHC binding.104,106 Since TCR genes do not

undergo somatic hypermutation, this process is not

directly analogous to the affinity maturation involved in

the generation of memory B cells, and results in relatively

modest increases in affinity. Nevertheless, the data suggest

that memory T cells may represent a selected cell population

having a higher average affinity for antigen than the starting

pool of antigen-responsive naı̈ve cells.

As discussed above, memory T cells are phenotypically

heterogeneous. While the extent to which this heterogeneity

also applies to the functional properties of memory cells

remains to be fully investigated, it is evident that central

memory cells and effector memory cells exhibit clear differ-

ences in their response to antigen. Thus, a direct comparison

of these two subpopulations showed that CD4+ CD45R0+

CCR7– effector memory cells secrete a broad range of

cytokines (IL-2, IFN-c, IL-4 and IL-5) within 24 hr of

stimulation through the TCR, while CD4+ CD45R0+

CCR7+ central memory cells secrete only IL-2.17 In addi-

tion, effector memory cells were also able to proliferate in

response to lower concentrations of anti-CD3 antibodies

than central memory cells, although the latter were still

more responsive than naı̈ve T cells. Therefore, memory

T cells are in fact functionally heterogeneous, and any

general distinction between the functional properties of

naı̈ve and memory T cells is clearly an oversimplification.

This heterogeneity may partially account for discrepancies

in the literature regarding differences between naı̈ve and

memory cells.
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MIGRATION OF NAÏVE AND MEMORY T CELLS

Lymphocyte migration is controlled by the combination

of adhesion molecules and chemokine receptors expressed

by lymphocytes. Since the expression of these molecules

differs between naı̈ve and memory T cells, it is not surprising

that these cells have different migratory properties.

Naı̈ve T cells exhibit a restricted pattern of migration,

in which they move continuously between the secondary

lymphoid organs (spleen, lymph nodes and Peyer’s patches)

via blood and lymph; transit through individual organs

takes about 12–18 hr.111 The expression of CD62L and

CCR7 by naı̈ve T cells plays a key role in establishing this

recirculation pattern. Thus, entry of naı̈ve T cells into lymph

nodes and Peyer’s patches occurs at HEVs in a CD62L- and

CCR7-dependent manner (see above). In addition, although

initial entry of lymphocytes into the spleen is a passive

process, with T cells being deposited from the blood into

the marginal zone, migration of cells into the T-cell zones

of the spleen may also require expression of CCR7.112

However, naı̈ve T cells lack homing receptors for peripheral

tissues and chemokine receptors for inflammatory cytokines

and are therefore unable to enter non-lymphoid tissues.

By contrast, some memory T cells express chemokine

and adhesion receptors that enable them to extravasate into

non-lymphoid tissues.17 Migration into peripheral tissues

was originally demonstrated for memory-phenotype T cells

in sheep and subsequently demonstrated for antigen-specific

memory T cells in mice.6,59,113–116 However, as discussed

above, memory T cells are heterogeneous with respect to

the expression of homing molecules and likewise exhibit

heterogeneity in migration. Central memory cells, which

express CD62L and CCR7, are able to enter lymph nodes

via HEVs and exhibit a pattern of migration that is similar

to that of naı̈ve T cells. Conversely, effector memory cells

lack CD62L and CCR7 but express homing receptors that

allow them to enter non-lymphoid tissues; these cells may

reach lymph nodes via afferent lymph rather than through

HEVs.6 In addition, subpopulations of memory T cells

exhibit a preference for migration to particular tissues, for

example gut vs. skin, on the basis of the particular homing

molecules expressed.113,117–122 This predilection for specific

tissues may be dictated by the local environment in which

initial T-cell priming occurs.121–123

The migration pathways favoured by naı̈ve and memory

T cells are linked to their activation requirements and func-

tional properties. As described above, activation of naı̈ve

T cells requires antigen presentation on mature DCs. These

APCs are found in the T-cell zones of secondary lymphoid

organs; DCs move into these areas and present antigen

following the uptake of pathogens in peripheral sites.124

Hence, secondary lymphoid organs serve as predetermined

meeting places for naı̈ve T cells and DCs that maximize the

chance of low-frequency T cells encountering their specific

antigen. Continuous movement of naı̈ve T cells between

different lymphoid organs allows these cells to scan the

surface of DCs derived from all parts of the body. In

addition, the environment of the organised lymphoid tissues

is ideal for expansion of activated T cells and their

differentiation into effectors.

Conversely, activation of memory T cells can occur

outside the optimized conditions of the secondary lymphoid

organs, owing both to the increased frequency of antigen-

specific cells among memory cells and to their ability to

become activated by a wider range of APCs. As a con-

sequence, effector memory T cells can efficiently perform a

surveillance function at potential sites of pathogen invasion

and provide a rapid response to re-infection. In contrast,

central memory T cells, which appear to migrate in a similar

manner to naı̈ve T cells, probably respond to antigen in

secondary lymphoid organs. Whether central memory cells

actually require antigen presentation on DCs in order to

undergo activation and differentiation into effector cells

is unclear (see above). Nevertheless, it seems likely that

a much greater degree of expansion will occur following

antigenic stimulation in lymphoid organs. Therefore,

central and effector memory T cells may provide comple-

mentary functions upon secondary infection, with effector

memory cells providing an immediate local response and

central memory cells rapidly generating large numbers of

effectors.

LIFESPAN OF NAÏVE VS. MEMORY T CELLS

In general, cell populations can be maintained at constant

numbers by two mechanisms: (1) survival of long-lived cells

that do not divide, and (2) proliferation of shorter lived

cells, which is balanced by the same rate of cell death

(turnover). Under non-disease conditions, the overall rate of

T-cell turnover is relatively slow, indicating that these

cells can remain in interphase for long periods of time. This

was shown initially in rodents, where T-cell proliferation

in vivo was measured by infusion of a labelled DNA

precursor, 3H-thymidine.125–129 From this type of study, the

turnover time for T cells in the thoracic duct of mice was

calculated to be of the order of 4–6 months.127 More recent

studies using 2H-glucose as a DNA precursor have shown

that human T cells also turn over slowly.130 Here, the mean

intermitotic times for CD4+ and CD8+ T cells in peripheral

blood were estimated to be 87 and 77 days, respectively.

Studies in a number of different species, including

mice,131 sheep,6 rhesus macaques132 and humans,133,134 have

shown that memory-phenotype T cells turn over at a faster

rate than naı̈ve-phenotype T cells. On average, the rate of

incorporation of labelled DNA precursors is approximately

5 times faster for memory-phenotype cells than naı̈ve-

phenotype cells. Extrapolation of these data directly to

naı̈ve and memory T cells is complicated by the limitations

of using phenotypic markers to identify these cells (see

above). However, it is notable that studies of cell popu-

lations that can be designated as memory T cells with high

confidence – cells analysed at extended periods after

immunization, using TCR transgenics or MHC tetramers

to identify antigen-specific cells – have shown that these cells

exhibit similar rates of division in vivo to memory-

phenotype T cells in normal mice.55,135,136 The implication

therefore is that memory T cells are maintained by
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intermittent cell division while naı̈ve T cells persist as

relatively quiescent, non-dividing cells.

Although memory-phenotype T cells exhibit rapid

turnover overall, some memory T cells appear to remain

in a non-dividing state for long periods of time. This is

evident from the results of DNA labelling studies, which

show considerable heterogeneity in the rates at which

cells incorporate label during the infusion phase or lose

label after the termination of treatment.131,134 This is not

surprising in view of the evidence cited above for hetero-

geneity amongst memory T cells. At present, it is unknown

whether long- and short-lived memory T cells correspond

to subpopulations of cells that can be distinguished

phenotypically (e.g. central vs. effector memory T cells).

FACTORS CONTROLLING THE MAINTENANCE

OF NAÏVE AND MEMORY T CELLS

In addition to exhibiting distinct kinetic behaviour, naı̈ve

and memory T cells are also dependent on different factors

for maintaining their survival. Two main stimuli have been

studied in this regard: (1) MHC-peptide, and (2) cytokines.

MHC-peptide

The issue of whether long-term survival of naı̈ve T cells is

dependent on contact with self-MHC-peptide ligands has

been studied extensively.55,137–145 Because MHC expression

in the thymus is essential for the initial development of

T cells, investigating the role of peripheral MHC in T-cell

survival requires either adoptive transfer of mature T cells

into MHC-deficient hosts or selective and transient expres-

sion of MHC in the thymus of such mice. In general, these

studies have shown that the lifespan of naı̈ve CD4+ and

CD8+ T cells is shortened in the absence of MHC class II

or class I, respectively. However, it is notable that naı̈ve

CD4+ T cells can still survive for considerable periods

of time in the absence of MHC class II. Thus, the half-life

of naı̈ve CD4+ cells in the absence of MHC class II has

been estimated to be approximately 3–4 weeks by some

investigators,140,145 while others have reported that naı̈ve

CD4 cells can survive equally well in control and MHC class

II-deficient hosts for the first 4144 or 8143 weeks after

transfer. These results imply that naı̈ve CD4 cells require

only very infrequent contact with MHC in order to survive.

The nature of the MHC-ligands involved in transmitting

survival signals to naı̈ve T cells is unknown. For homeo-

static proliferation (see above), T cells respond to self-MHC

in a peptide-specific manner, with the peptides involved

being at least partially related to those involved in T-cell

positive selection in the thymus.144,146–148 Therefore, one

possibility is that the same MHC-peptide ligands that

stimulate proliferation in lymphopenic animals trigger

survival under normal conditions. Conversely, survival of

naı̈ve T cells may depend only upon recognition of MHC

and be independent of the bound peptide.

There has been extensive debate surrounding the role

of persisting antigen in the maintenance of T-cell memory.

While it remains a contentious issue whether periodic

contact with antigen is required to maintain protective

immunity,149–153 it is now generally accepted that the sur-

vival of memory T cells is antigen-independent. Thus,

numerous studies in mice have shown that both CD4+

and CD8+ memory T cells of defined specificity survive

indefinitely following adoptive transfer into antigen-free

hosts.54,55,91–93,154–157 Furthermore, long-term survival also

applies to CD4+ and CD8+ memory T cells transferred to

MHC class II- and MHC class I-deficient mice, respec-

tively.55,157–159 Therefore, unlike naı̈ve T cells, memory

T cells do not appear to depend on interactions with MHC

for survival. Notably, memory T cells also continue to

proliferate in MHC-deficient hosts.55,141,157,159 For CD8+

memory T cells, proliferation occurs at similar rates

after transfer to MHC class I+/+ or MHC class Ix/x hosts,

implying that turnover, like survival is regulated by

signals independent of TCR triggering.55

By contrast, it is less clear whether the functional

properties of memory T cells are also independent of contact

with MHC. For some properties of memory T cells, this

does appear to be the case. Thus, CD4+ and CD8+ memory

T cells retain a CD44hi phenotype and the capacity for

rapid secretion of IFN-c after transfer to MHC-deficient

mice.55,159 However, it has been reported that CD4 memory

cells parked in MHC class II-deficient hosts lose other

functional characteristics ascribed to memory cells,

namely the ability to respond to antigen presented by

non-professional APCs such as B cells and a relative

independence from costimulation.159 Whether a similar

requirement for contact with MHC exists for CD8 memory

cells remains to be investigated.

Cytokines

The main cytokine that has been implicated in maintaining

the survival of naı̈ve T cells is IL-7. In fact, IL-7 seems to be

essential for naı̈ve T cell survival, as these cells disappear

rapidly following adoptive transfer to IL-7x/x recipients or

in normal mice treated with anti-IL-7R antibodies; in

addition, IL-7Rx/x naı̈ve T cells fail to survive in normal

hosts.70,160,161 Although other cytokines such as IL-4, IL-6

and IL-15 have been shown to rescue naı̈ve T cells from

apoptosis in vitro162,163 (M. Berard and D. F. Tough,

unpublished data), these cytokines do not appear to be

required for the survival of naı̈ve T cells in vivo and cannot

compensate for the absence of IL-7.161 In addition to

promoting the survival of naı̈ve T cells in normal mice, IL-7

also seems to be required for homeostatic proliferation of

naı̈ve T cells under lymphopenic conditions.70,160 Thus,

maintenance of naı̈ve T cells appears to be strictly depen-

dent on contact with both self-MHC-peptide ligands

and IL-7.

Evidence that cytokines play a role in the maintenance

of memory T cells came initially from studies showing that

injection of either type I IFN (IFN-a/b) or inducers of

IFN-a/b stimulated TCR-independent proliferation of

memory-phenotype (CD44hi) CD8+ T cells in vivo164,165

Subsequently, a number of other cytokines, including IL-12,

IL-15, IL-18 and IFN-c, were found to have similar
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effects.18,166 Notably, enhanced proliferation was restricted

to CD44hi CD8+ T cells following injection of each of these

cytokines; little or no cell division was induced amongst

naı̈ve phenotype T cells. Of the cytokines shown to promote

proliferation of memory-phenotype CD8+ T cells in vivo,

however, only IL-15 was able to stimulate these cells to

divide when added to purified T cells in vitro. Here, the

selective proliferation of memory-phenotype CD8+ T cells

in response to IL-15 was associated with much higher

expression of the IL-15R b-chain (CD122) on CD44hi vs.

CD44lo CD8+ T cells.18 Since IFN-a/b, IFN-c, IL-12 and

IL-18 are all capable of up-regulating IL-15 expression by

APCs (the latter two through induction of IFN-c), it has

been proposed that IL-15 acts as a final common effector

molecule mediating the effects on CD44hi CD8+ T cell

proliferation.18,166

Based on the observation that injection of IL-15 or

induction of IL-15 expression in vivo results in enhanced

proliferation of memory-phenotype CD8+ T cells, it was

hypothesized that the high proliferation of these cells in

normal mice might be attributable to background produc-

tion of IL-15. In support of this idea, injection of anti-

CD122 antibodies into mice was shown to strongly reduce

the proliferation of CD44hi CD8+ T cells.167 Although this

antibody can block signalling through both the IL-15R and

the IL-2R, the inhibitory effects appeared to result from

blocking IL-15, since injection of anti-IL-2 + anti-IL-2Ra
actually enhanced CD44hi CD8+ T-cell proliferation. The

conclusion from this study was that IL-15 and IL-2 had

opposing effects on the proliferation of memory-phenotype

CD8 T cells in vivo, with IL-15 enhancing and IL-2

inhibiting cell division.

Strikingly, the number of memory-phenotype CD8+

T cells is markedly reduced in both IL-15- and IL-15Ra-

deficient mice,168,169 and increased in transgenic mice over-

expressing IL-15.170,171 Thus, IL-15 appears to play an

important role in regulating the number of CD44hi CD8+

T cells found in normal mice; definitive evidence of its

importance for antigen-specific CD8 memory T cells awaits

further study in infection/immunization models. Exactly

how IL-15 controls the maintenance of CD44hi CD8+ T cells

remains unclear. The simplest idea is that IL-15-induced

proliferation is necessary to counter a rapid rate of death;

increases or decreases in the amount of IL-15 tip the balance

towards more or less accumulation of CD44hi CD8+ T cells,

respectively. However, the fact that a considerable propor-

tion of memory-phenotype CD8+ T cells can persist for

long periods of time in a non-dividing state is inconsistent

with the idea that all memory cells are intrinsically short-

lived.131 Therefore, an alternative possibility is that IL-15

is able to promote survival as well as proliferation of

CD44hi CD8+ T cells. In this respect, it is notable that IL-15

induces up-regulated expression of the pro-survival factor

Bcl-2 in CD8+ T cells.171

In contrast to its effects on CD44hi CD8+ T cells, IL-15

stimulates little proliferation of memory-phenotype CD4+

T cells either in vivo or in vitro.18 Furthermore, memory-

phenotype CD4+ T cells are found in normal numbers in

IL-15x/x and IL-15Rax/x mice.168,169 Therefore, IL-15

does not appear to play a role in the maintenance of CD4+

memory cells. In fact, CD4+ memory cells are long-lived in

mice deficient for the common c-chain, indicating that none

of the cytokines utilizing this receptor component (IL-2, IL-

4, IL-7, IL-9 and IL-15) are essential for the survival of

CD4+ memory T cells.71 Thus, if cytokines do play a role

in the maintenance of CD4+ memory T cells, the factors

involved are clearly distinct from those that have effects

on either naı̈ve T cells or CD8+ memory cells. Presently, the

best evidence that the turnover of CD4+ memory T cells

can be regulated by cytokines comes from a study in which

T-cell proliferation was assessed following the activation

of natural killer (NK1.1+) T cells in vivo.172 Under these

conditions, the proliferation of CD44hi CD4+ (NK1.1x)

T cells was markedly increased through a mechanism that

was dependent on IL-12 or IFN-c.

CONCLUSIONS

There is considerable evidence to support the idea that

T cells retain a permanent imprint of a prior response to

antigen. In broad terms, naı̈ve and memory T cells differ in

phenotype, pattern of migration, responsiveness to antigen

and cytokines and requirements for survival. However, it is

also clear that memory T cells are heterogeneous with

respect to all of these parameters. The recent identification

of markers that can be used to separate subpopulations of

memory T cells will allow a more precise delineation of

the characteristics of memory cells.

Variation amongst memory T cells may arise as a result

of the initial conditions of activation, but might also be

influenced by the environment in which memory T cells

reside. In this respect, future work aimed at elucidating

the relationship between phenotypically distinct subpopu-

lations of memory T cells should provide important insight

into the nature of T-cell memory. For example, while it is

evident that CD4+ central memory cells can differentiate

into cells resembling effector memory cells upon stimulation

with antigen or cytokines in vitro, the rate at which this

conversion takes place in vivo, and whether reversion from

effector to central memory cell will occur in the absence

of such stimulation, are not known.17,173 In addition,

the identification of memory T cells expressing certain

markers that are characteristic of naı̈ve T cells raises the

question of whether some memory T cells may in fact be

completely indistinguishable from naı̈ve T cells in pheno-

type. If so, it would be of interest to determine whether

these cells retain any functional characteristics of memory

cells.

Finally, the extent to which the altered functional

properties of memory T cells contribute to the character-

istics of the secondary immune response remains unclear.

In practice, changes at the single cell level probably

synergize with increases in frequency in producing a

rapid response to secondary infection (Fig. 1). Hence,

effector memory T cells are able to respond immediately

to re-infection on the basis of their distribution, reduced

activation requirements and increased frequency, and

should therefore limit the early spread of infection.116
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At the same time, central memory T cells are capable of

generating rapidly a large number of effector cells based

on their high precursor frequency; an accelerated ability to

differentiate into effectors may also play a role.174 These

effector cells then distribute systemically and act to clear

the residual infection. Understanding how memory T cells

are maintained not only at a high frequency but also in a

enhanced state of functional readiness therefore is impor-

tant for both our fundamental understanding of the immune

system and for the rational design of vaccines.
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